

Bachelor of Computer Applications
(BCA)

OPERATING SYSTEMS LAB
 (DBCACO306T24)

Self-Learning Material
(SEM III)

Jaipur National University
Centre for Distance and Online Education

Established by Government of Rajasthan

Approved by UGC under Sec 2(f) of UGC ACT 1956
&

NAAC A+ Accredited

Jaipur National University Course Code: DBCACO306P24

 OPERATING SYSTEMS LAB

TABLE OF CONTENTS

Course Introduction i

Experiment 1

Process Creation and Termination
1

Experiment 2

Implementing a Simple Shell
1

Experiment 3

Implementing a Multithreaded Program
1

Experiment 4

Implementing Producer-Consumer Problem Using Semaphores
2

Experiment 5

Simulating a CPU Scheduling Algorithm
2

Experiment 6

Simulating Virtual Memory with Paging
3

Experiment 7

Simulating File System Operations
3

Experiment 8

Implementing a Memory Allocator
3

Experiment 9

Simulating Disk Scheduling Algorithms
4

Experiment 10

Implementing a Simple Synchronization Mechanism Using Mutex
4

Experiment 11

Implementing a Banker's Algorithm for Prevention of Deadlock
4

Experiment 12

Implementing a Page Replacement Algorithm
5

Experiment 13

Process Creation and Termination
5

Experiment 14

Implementing a Simple Shell
7

Experiment 15

Implementing a Multithreaded Program
9

Experiment 16

Implementing Producer-Consumer Problem Using Semaphores
10

EXPERT COMMITTEE

Prof. Sunil Gupta

(Computer and Systems Sciences, JNU Jaipur)

Dr. Deepak Shekhawat

(Computer and Systems Sciences, JNU Jaipur)

Dr. Satish Pandey

(Computer and Systems Sciences, JNU Jaipur)

COURSE COORDINATOR

Ms. Rashmi Choudhary

(Computer and Systems Sciences, JNU Jaipur)

UNIT PREPARATION

Unit Writer(s) Assisting &

Proofreading
Unit Editor

Mr. Shish Dubey

(Computer and

Systems Sciences,

JNU Jaipur)

Mr. Ram Lal Yadav

(Computer and

Systems Sciences,

JNU Jaipur)

Dr. Deepak

Shekhwat

(Computer and

Systems Sciences,

JNU Jaipur)

Secretarial Assistance

Mr. Mukesh Sharma

COURSE INTRODUCTION

Welcome to the Operating System Lab course! This hands-on lab is designed to give you a

deeper understanding of the concepts and principles behind operating systems by allowing

you to engage with real-world applications and scenarios. Throughout this course, you'll

explore the core functions of operating systems, such as process management, memory

management, file systems, and system calls, through practical exercises and experiments.

You'll work with different operating system environments, gaining insights into how various

components interact to provide a seamless computing experience. By diving into tasks like

process scheduling, inter-process communication, and system performance tuning, you'll not

only reinforce theoretical knowledge but also develop valuable skills for troubleshooting and

optimizing operating systems.

This lab is structured to enhance your problem-solving abilities and critical thinking through

hands-on experience. Expect to work on a series of projects and assignments that will

challenge you to apply what you've learned in practical, real-world contexts. Whether you’re

debugging system issues or designing efficient algorithms for resource management, this lab

will equip you with a solid foundation in operating systems and prepare you for future

technical challenges.

Course Outcomes:

At the completion of the course, a student will be able to:

1. Remember the functions, structures and history of operating systems.

2. Understand of design issues associated with operating systems

3. Apply concepts including scheduling, synchronization and deadlocks.

4. Distinguish multithreading , Multitasking & Multiprogramming and also able to explain

the concept of memory management including virtual Evaluate the requirement for

process synchronization and coordination handled by operating system

5. Categorize memory organization and explain the function of each element of a memory

hierarchy and analyze its allocation policies.

6. Conceptualize the components involved in designing a contemporary OS.

Acknowledgements:

The content we have utilized is solely educational in nature. The copyright proprietors of the

materials reproduced in this book have been tracked down as much as possible. The editors

apologize for any violation that may have happened, and they will be happy to rectify any such

material in later versions of this book.

i

1

Assignment 1: Process Creation and Termination

Program Statement: Write a C program to demonstrate process creation and termination

using the fork() system call. The program should:

1. Create a child process.

2. Print the process IDs of both the parent and child processes.

3. The child process should print a message and then terminate.

4. The parent process should wait for the child to terminate and then print a termination

message.

Solution Description: By copying the caller process, the fork() system function creates a

new process. The parent and the child processes are the outcomes of this. The child process

receives a value of 0 from the fork() operation, whereas the parent process receives the

child's PID. To ensure synchronized process termination, the parent process uses the wait()

system function to wait for the child process to end. Understanding process generation,

unique process identifiers (PIDs), and synchronization-based inter-process communication

are all aided by this assignment.

Assignment 2: Implementing a Simple Shell

Program Statement: Develop a simple shell program in C that can execute basic commands.

The shell should:

1. Display a prompt for the user.

2. Read a command from the user input.

3. Execute the command using the execvp() system call.

4. Handle commands like exit to terminate the shell.

Solution Description:An operating system interface that enables users to communicate with

it is called a shell. The program should repeatedly prompt the user for input, parse the

command and arguments, and use fork() to create a new process to execute the command.

The execvp() function will replace the child process’s memory space with a new program.

This assignment covers command parsing, process management, and the use of system calls

to execute programs.

Assignment 3: Implementing a Multithreaded Program

Program Statement: Write a C program to create multiple threads using the pthread library.

The program should:

1. Create at least three threads.

2. Each thread should print a unique message.

2

3. The main thread should wait for all threads to complete before exiting.

Solution Description: Threads are a way to achieve concurrency in a program. To start new

threads, use the pthread_create() function; to wait for the threads to finish, use the

pthread_join() method.Each thread will execute a separate function that prints a unique

message. This assignment helps understand thread creation, execution, and synchronization

in a multithreaded environment.

Assignment 4: Implementing Producer-Consumer Problem Using Semaphores

Program Statement: Implement the producer-consumer problem using semaphores in C.

The program should:

1. Use two semaphores to synchronize access to a shared buffer.

2. The producer thread should add items to the buffer.

3. The consumer thread should remove items from the buffer.

4. Ensure mutual exclusion and avoid race conditions.

Solution Description:A typical synchronization challenge, the producer-consumer dilemma

involves two different process types sharing a shared buffer: producers and consumers.

Semaphores are used to manage access to the buffer, ensuring that only one process can

modify the buffer at a time. The sem_wait() and sem_post() functions are used to decrement

and increment the semaphore values, respectively. This assignment covers synchronization

mechanisms and the prevention of race conditions in concurrent programming.

Assignment 5: Simulating a CPU Scheduling Algorithm

Program Statement: Write a C program to simulate the Round Robin CPU scheduling

algorithm. The program should:

1. Accept the number of processes and their burst times.

2. Use a time quantum to allocate CPU time to each process in a round-robin fashion.

3. Display the order of execution and the completion time for each process.

Solution Description:Round Robin is a preemptive scheduling technique in which a

predetermined time slot is allotted to each task in a cyclical sequence. The program will

maintain a queue of processes, allocate the CPU to each process for the duration of the time

quantum, and then move to the next process. If a process is not finished, it is re-added to the

end of the queue. This assignment helps understand pre-emptive scheduling, time slicing, and

process management.

3

Assignment 6: Simulating Virtual Memory with Paging

Program Statement: Create a C program to simulate virtual memory management using

paging. The program should:

1. Accept a sequence of memory access requests.

2. Use a fixed-size page table to map virtual addresses to physical addresses.

3. Implement page replacement using the Least Recently Used (LRU) algorithm.

4. Display the page table and the number of page faults.

Solution Description:A memory management technique called paging makes it unnecessary

to allocate physical memory in a contiguous manner. The program will simulate a page table

that maps virtual addresses to physical frames. The LRU algorithm will be used to replace the

least recently used page when a page fault occurs. This assignment covers virtual memory

concepts, page tables, and page replacement algorithms.

Assignment 7: Simulating File System Operations

Program Statement: Write a C program to simulate basic file system operations. The

program should:

1. Create a file.

2. Write data to the file.

3. Read data from the file.

4. Delete the file.

Solution Description: File system operations are crucial for managing data on a storage

device. The program will use system calls such as open(), write(), read(), and unlink() to

perform file operations. The open() system call creates a file, write() and read() handle data

input/output, and unlink() deletes the file. This assignment helps in understanding file I/O

operations and system call usage in Unix-like operating systems.

Assignment 8: Implementing a Memory Allocator

Program Statement: Develop a simple memory allocator in C using the malloc() and free()

functions. The allocator should:

1. Allocate memory blocks of a specified size.

2. Maintain a free list of available memory blocks.

3. Reuse freed memory blocks for new allocations.

Solution Description: Memory allocation involves managing the allocation and deallocation

of memory blocks. The program will use malloc() to allocate memory and maintain a free list

to keep track of available blocks. The free() function will add freed blocks back to the free

4

list. This assignment covers dynamic memory management and the implementation of a

custom memory allocator.

Assignment 9: Simulating Disk Scheduling Algorithms

Program Statement: Write a C program to simulate disk scheduling algorithms. The

program should:

1. Implement FCFS (First-Come, First-Served) and SSTF (Shortest Seek Time First)

algorithms.

2. Accept a sequence of disk access requests.

3. Calculate the total seek time for each algorithm.

4. Display the order of request servicing and the total seek time.

Solution Description: Disk scheduling algorithms manage the order in which disk access

requests are serviced to minimize seek time. While SSTF chooses the request with the

quickest seek time from the current head position, FCFS responds to requests in the order that

they come in.The program will simulate both algorithms, process the sequence of requests,

and calculate the total seek time for comparison. This assignment covers disk scheduling

techniques and performance evaluation.

Assignment 10: Implementing a Simple Synchronization Mechanism Using Mutex

Program Statement: Create a C program to implement a simple synchronization mechanism

using mutex locks. The program should:

1. Create multiple threads that access a shared resource.

2. Use a mutex to ensure mutual exclusion.

3. Each thread should increment a shared counter.

4. Display the final value of the counter.

Solution Description: Mutex locks provide a mechanism for ensuring that only one thread

accesses a shared resource at a time. The pthread_mutex_lock() and

pthread_mutex_unlock() procedures will be used by the application to lock and unlock the

mutex, which will be created using the pthread_mutex_t type.Each thread will increment a

shared counter, ensuring mutual exclusion to prevent race conditions. This assignment helps

understand synchronization and mutual exclusion in multithreaded programs.

Assignment 11: Implementing a Banker's Algorithm for Prevention of Deadlock

Program Statement: Write a C program to implement the Banker's algorithm for prevention

of deadlock. The program should:

5

1. Accept the number of processes and resource types.

2. Take the allocation and maximum demand matrices as input.

3. Determine if the system is in a safe state.

4. Display the safe sequence if it exists.

Solution Description: The Banker's algorithm is used to prevent deadlocks by ensuring that

resource allocation does not lead to an unsafe state. The program will accept matrices

representing current allocations and maximum demands, calculate the need matrix, and check

for a safe sequence of process execution. If a safe sequence exists, the program will display

it; otherwise, it will indicate that the system is in an unsafe state. This assignment covers

deadlock avoidance techniques and resource allocation.

Assignment 12: Implementing a Page Replacement Algorithm

Program Statement: Develop a C program to implement the FIFO (First-In, First-Out) page

replacement algorithm. The program should:

1. Accept a sequence of page requests.

2. Use a fixed-size frame buffer.

3. Replace pages using the FIFO algorithm.

4. Display the contents of the frame buffer after each request and the number of page

faults.

Solution Description: The FIFO page replacement algorithm replaces the oldest page in the

buffer when a page fault occurs. The program will maintain a queue to keep track of the order

of pages in the frame buffer. Each new page request will be processed, and ifHere are more

detailed lab assignments for an Operating Systems course, each with a program statement and

solution description, focusing on common operating system concepts.

Assignment 13: Process Creation and Termination

Program Statement: Write a C program to demonstrate process creation and termination

using the fork() system call. The program should:

1. Create a child process.

2. Print the process IDs of both the parent and child processes.

3. The child process should print a message and then terminate.

4. The parent process should wait for the child to terminate and then print a termination

message.

Solution Description:By copying the caller process, the fork() system function creates a

new process. The parent and the child processes are the outcomes of this. The fork() method

6

returns a value of 0 to the child process and returns the child's PID to the parent process. To

ensure synchronized process termination, the parent process uses the wait() system function

to wait for the child process to end.

 This assignment helps in understanding process creation, unique process identifiers (PIDs),

and inter-process communication through synchronization.

“#include <stdio.h>

#include <sys/types.h>

#include <unistd.h>

#include <sys/wait.h>

int main() {

pid_tpid = fork();

 if (pid == 0) {

 // Child process

printf("Child process: PID = %d\n", getpid());

printf("Child process is terminating.\n");

 } else if (pid> 0) {

 // Parent process

printf("Parent process: PID = %d, Child PID = %d\n", getpid(), pid);

wait(NULL); // Wait for child process to terminate

printf("Parent process: Child has terminated.\n");

 } else {

 // Fork failed

printf("Fork failed!\n");

 }

return 0;

}”

7

Assignment 14: Implementing a Simple Shell

Program Statement: Develop a simple shell program in C that can execute basic commands.

The shell should:

1. Display a prompt for the user.

2. Read a command from the user input.

3. Execute the command using the execvp() system call.

4. Handle commands like exit to terminate the shell.

Solution Description:An operating system interface that enables users to communicate with

it is called a shell.The program should repeatedly prompt the user for input, parse the

command and arguments, and use fork() to create a new process to execute the command.

The execvp() function will replace the child process's memory space with a new program.

This assignment covers command parsing, process management, and the use of system calls

to execute programs.

“#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <unistd.h>

#include <sys/types.h>

#include <sys/wait.h>

#define MAX_LINE 80 // Maximum length of a command

int main() {

char *args[MAX_LINE / 2 + 1]; // Command line arguments

char input[MAX_LINE]; // User input

 while (1) {

printf("osh> ");

fflush(stdout);

if (!fgets(input, MAX_LINE, stdin)) break;

input[strcspn(input, "\n")] = 0; // Remove newline character

8

if (strcmp(input, "exit") == 0) break;

pid_tpid = fork();

 if (pid == 0) {

 // Child process

char *token = strtok(input, " ");

int i = 0;

while (token != NULL) {

args[i++] = token;

token = strtok(NULL, " ");

 }

args[i] = NULL;

execvp(args[0], args);

perror("execvp failed");

exit(1);

 } else if (pid> 0) {

 // Parent process

wait(NULL);

 } else {

 // Fork failed

perror("fork failed");

 }

 }

return 0;

}”

9

Assignment 15: Implementing a Multithreaded Program

Program Statement: Write a C program to create multiple threads using the pthread library.

The program should:

1. Create at least three threads.

2. Each thread should print a unique message.

3. The main thread should wait for all threads to complete before exiting.

Solution Description:Software can accomplish concurrency through the use of threads. To

start new threads, use the pthread_create() function; to wait for the threads to finish, use the

pthread_join() method. Each thread will execute a separate function that prints a unique

message. This assignment helps understand thread creation, execution, and synchronization

in a multithreaded environment.

#include <stdio.h>

#include <stdlib.h>

#include <pthread.h>

“

void *printMessage(void *threadid) {

longtid = (long)threadid;

printf("Thread %ld: Hello, World!\n", tid);

pthread_exit(NULL);

}

int main() {

pthread_t threads[3];

intrc;

long t;

 for (t = 0; t < 3; t++) {

printf("Creating thread %ld\n", t);

rc = pthread_create(&threads[t], NULL, printMessage, (void *)t);

 if (rc) {

printf("ERROR; return code from pthread_create() is %d\n", rc);

exit(-1);

 }

10

 }

 for (t = 0; t < 3; t++) {

pthread_join(threads[t], NULL);

 }

return 0;

}”

Assignment 16: Implementing Producer-Consumer Problem Using Semaphores

Program Statement: Implement the producer-consumer problem using semaphores in C.

The program should:

1. Use two semaphores to synchronize access to a shared buffer.

2. The producer thread should add items to the buffer.

3. The consumer thread should remove items from the buffer.

4. Ensure mutual exclusion and avoid race conditions.

Solution Description:A typical synchronization challenge, the producer-consumer dilemma

involves two different process types sharing a shared buffer: producers and consumers.

Semaphores are used to manage access to the buffer, ensuring that only one process can

modify the buffer at a time. The sem_wait() and sem_post() functions are used to decrement

and increment the semaphore values, respectively. This assignment covers synchronization

mechanisms and the prevention of race conditions in concurrent programming.

“#include <stdio.h>

#include <stdlib.h>

#include <pthread.h>

#include <semaphore.h>

#define BUFFER_SIZE 10

int buffer[BUFFER_SIZE];

int count = 0;

sem_t empty, full, mutex;

void *producer(void *param) {

int item;

11

 for (int i = 0; i < 20; i++) {

item = rand() % 100; // Produce an item

sem_wait(&empty);

sem_wait(&mutex);

 buffer[count++] = item; // Add item to the buffer

printf("Producer produced %d\n", item);

sem_post(&mutex);

sem_post(&full);

 }

pthread_exit(NULL);

}

void *consumer(void *param) {

int item;

 for (int i = 0; i < 20; i++) {

sem_wait(&full);

sem_wait(&mutex);

item = buffer[--count]; // Remove item from the buffer

printf("Consumer consumed %d\n", item);

sem_post(&mutex);

sem_post(&empty);

 }

pthread_exit(NULL);

}

int main() {

12

pthread_t prod, cons;

sem_init(&empty, 0, BUFFER_SIZE);

sem_init(&full, 0, 0);

sem_init(&mutex, 0, 1);

pthread_create(&prod, NULL, producer, NULL);

pthread_create(&cons, NULL, consumer, NULL);

pthread_join(prod, NULL);

pthread_join(cons, NULL);

sem_destroy(&empty);

sem_destroy(&full);

sem_destroy(&mutex);

return 0;}”

	fbc4b9ad58310cbbb75b7a57ba41900ffa5995aeabcae2243685607b2228438f.pdf
	509c3ff10ba963ffb45019c2376f85e877339aa283847d3c2c04d5a90f4d1ab3.pdf
	fbc4b9ad58310cbbb75b7a57ba41900ffa5995aeabcae2243685607b2228438f.pdf

